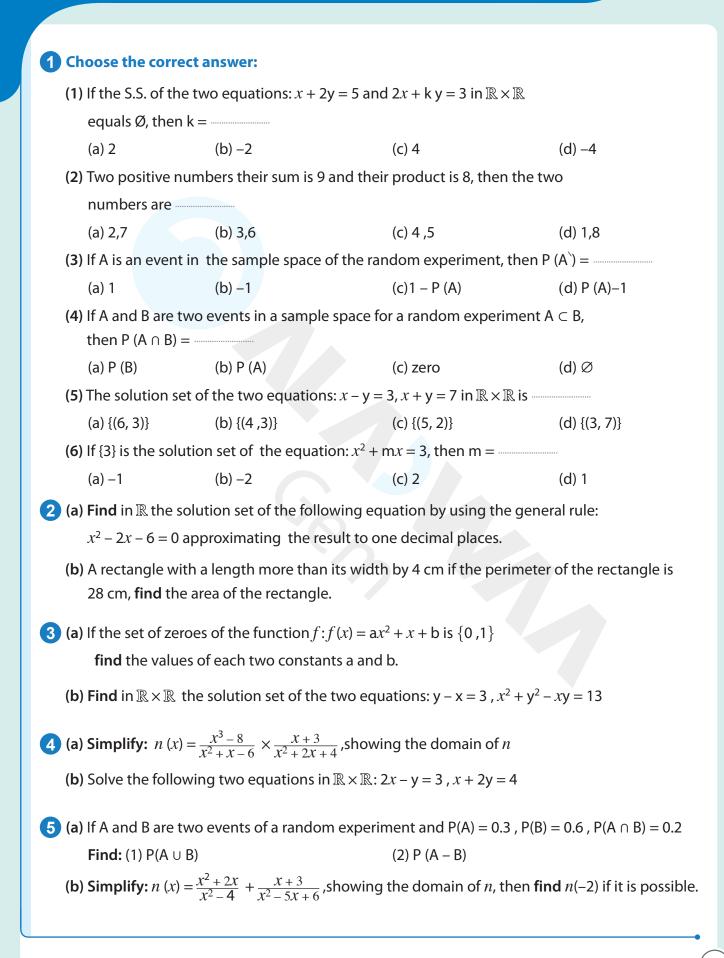
Algebra

1 Choose the correct answer:


(1) The simplest fo	rm of $n(x) = \frac{x+3}{x-3} \times \frac{x-3}{x^2-9}$	is	
(a) $\frac{1}{x+3}$	(b) $\frac{1}{r-3}$	(c) <i>x</i> + 3	(d) <i>x</i> – 3
(2) If A and B are ty	wo mutually exclusive ev	ents, then $P(A \cup B) = \dots$	
(a) P(B)	(b) P(A ∩ B)	(c) P(A) + P (B)	(d) P(A)
(3) The set of zeroe	es of the function $f(x) = x$	$x(x^2 - 2x + 1)$ is	
(a) {0 ,1}	(b) {0, -1}	(c) {0}	(d) {1}
(4) The ordered pa	ir which satisfies each of	the following equation	s: <i>x</i> y = 2,
x - y = 1 is			
(a) (1, 2)	(b) (2, 1)	(c) (1 ,1)	(d) (3, 1)
(5) The domain of	the function $f: f(x) = \frac{2-x}{7}$	is	
(a) $\mathbb{R} - \{7\}$	(b) ℝ – {2, 7}	(c) $\mathbb{R} - \{2\}$	(d) ℝ
(6) The domain of	$n: n(x) = \frac{3x+4}{x^2+25} + \frac{x-2}{x^2+7}$ i	S	
(a) $\mathbb{R} - \{5\}$	(b) ℝ – {–5,5, –7}	(c) R	(d) $\mathbb{R} - \{-5, 5\}$
2 (a) Simplify: $n(x) = \frac{x}{x-2} \div \frac{x+3}{x^2-x-2}$, showing the domain of n (b) Solve the following two equations in $\mathbb{R} \times \mathbb{R}$: $2x = 1 - y$, $x + 2y = 5$			
find: P(A – B)	wo events of a random e	xperiment and P(A) = 0.	7, P(A B) = 0.3,
(b) Simplify: <i>n</i> (<i>x</i>)	$=\frac{x^2+x}{x^2-1}-\frac{x+5}{x^2+4x-5}$, show	ving the domain of n	
4 (a) Find in $\mathbb R$ the so	olution set of the following	ng equation by using th	e general formula:
$x^2 - 4x + 1 = 0$ approximating the result to two decimal places.			
(b) If $n_1(x) = \frac{2x}{2x+6}$	$n_{2}(x) = \frac{x^{2} + 3x}{x^{2} + 6x + 9}$, prov	e that: $n_1 = n_2$:	
5 (a) If $n(x) = \frac{x-2}{x+1}$ Find: (1) the definition of the second	omain of n^{-1}	(2) n^{-1} (3)	
	x) = 2, find the value of x		
	he solution set of the tw		$^{2} - y^{2} = 25$

(2)

1 Choose the correct answer:

(1) The	(1) The set of zeroes of the function $f: f(x) = x (x^2 - 1)$ is			
(a)	{0}	(b) {0, -1}	(c) {0,1,-1}	(d) {0,1}
(2) The	set of zeroes o	of the function $f: f(x) = \frac{x^2 - x}{x - x}$	<u>9</u> is	
(a)	$\mathbb{R}-\{2\}$	(b) {-3, 3}	(c) {2}	(d) {3, -3, 2}
(3) If <i>n</i>	$(x) = \frac{x-2}{x+5}$, the	n the domain of n^{-1} is		
(a)	R	(b) ℝ – {2}	(c) \mathbb{R} – {2, –5}	(d) $\mathbb{R} - \{-5\}$
(4) The	common dom	ain of the two fractions $\frac{2}{\chi^2}$	$\frac{2}{-1}$ and $\frac{5x}{x^2 - x}$ is	
(a)	$\mathbb{R}-\{1\}$	(b) $\mathbb{R} - \{0, 1\}$	$(c)\mathbb{R}-\left\{0,1,-1\right\}$	$(d)\mathbb{R}{-}\{1,{-}1\}$
(5) The	S.S. of the two	equations: $x - y = 0$, $x^2 + y$	$r^2 = 18$ in $\mathbb{R} \times \mathbb{R}$ is	••
(a)	{(3, 3)}	(b) {(-3, -3)}	(c) {(3, -3), (-3, 3)}	(d) {(3, 3), (-3, -3)}
(6) The	set of zeroes o	of the function $f: f(x) = x^2$ -	- 25 is	
(a)	{5}	(b){-5}	(c) {-5, 5}	(d) Ø
(a) If A and B are two events of a random experiment,				
the	n find :		В	A
(1)	P (A ∩ B)			$ \begin{array}{ccc} \times 1 & (\times 2) & \times 5 \\ \times 4 & (\times 3) & & \end{array} $
(2)	P (A – B)			*4 *3
(3) The probability of non-occurrence of event A				
(b) Simplify: $n(x) = \frac{x-3}{x^2 - 7x + 12} - \frac{4}{x^2 - 4x}$, showing the domain of <i>n</i> .				
3 (a) Fin	d in $\mathbb R$ the solut	tion set of the following eq	uation by using the gene	ral rule:
		proximating the result to t		
(b) If the domain of the algebraic fraction $n: n(x) = \frac{x+2}{x^2 + ax + b}$ is $\mathbb{R} - \{2, 3\}$.				
Find the value of a and b.				
4 (a) If $n(x) = \frac{x^2 - 3x}{(x-3)(x^2+2)}$, then find $n^{-1}(x)$ in the simplest form , showing the domain of n^{-1}				
(b) Find in $\mathbb{R} \times \mathbb{R}$ the solution set of the two equations: $x + y = 7$, $x^2 + y^2 = 25$				
5 (a) Simplify: $n(x) = \frac{x^2 + 3x}{x^2 - 9} \div \frac{2x}{x + 3}$, showing the domain of n				
(b) C ol	vo the followin	a two oquations in D x D.	r + 2y = 7 $Fr = y = 2$	

(b) Solve the following two equations in $\mathbb{R} \times \mathbb{R}$: x + 3y = 7, 5x - y = 3

Geometry			
1 Choose the correc	t answer:		
(1)is a line endpoint on the	e segment with one endp e circle.	oint at the centre of the	circle and the other
(a) Diameter	(b) Radius	(c) Chord	(d) Axis of symmetry
(2) In the opposite figure: If m (\angle BAC) = 30°, then m (\angle BDC) =			D A 60°
(a) 15° (c) 30°		(b) 60° (d) 90°	C B
(3) The length of th 36 cm =		al angle of measure 30° i	n a circle of circumference
(a) 18	(b) 9	(c) 4.5	(d) 3
	o circles of radii lengths 9 rcles are	cm, and 4 cm respective	ely MN = 5 cm,
(a) touching ext	ernally	(b) intersecting	
(c) touching inte	ernally	(d) distant	
	al is cyclic if there is an ex the interior angle at the		vertices
(a) greater than	(b) complements	(c) supplements	(d) equal to
(6) In the opposite	-		A
	n (\angle ABD) = 36°, then m		
(a) 140°		(b) 54°	36° B
(c) 70°		(d)108°	D
(a) In the opposite	figure:		
	h radius length 5 cm		
$XY = 12 \text{ cm}, \overline{MY}$	\cap circle M = {Z} and ZY	= 8 cm.	8 cm Z 5 cm
Prove that: \overline{XY} i	s a tangent to circle M at	Х. Ү	12 cm X
respectively and a common tang	o circles with radii length d they are touching intern gent for both at A. e triangle BMN = 24 cm ² .	nally at A, \overline{AB} is	A N M

(a) In the opposite figure:

m (\angle A) = 30°, m (\widehat{HC}) = 120°, m (\widehat{BC}) = m (\widehat{DH}) (1) **Find:** m (\widehat{BD}) the minor)

(2) **Prove that:** AB = AD

(b) In the opposite figure:

AB is a diameter in the circle M

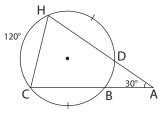
, C \in the circle M, m (\angle CAB) = 30°

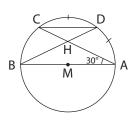
, D is midpoint of \overrightarrow{AC} , $\overrightarrow{DB} \cap \overrightarrow{AC} = \{H\}$

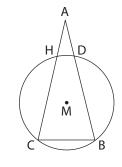
- (1) Find: m (\angle BDC) and m (\widehat{AD})
- (2) Prove that: AB // DC

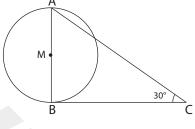
(a) In the opposite figure:

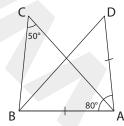
ABC is a triangle in which AB = AC, \overline{BC} is a chord in the circle M, if \overline{AB} and \overline{AC} cut the circle at D and H respectively. **Prove that:** m (\overline{DB}) = m (\overline{HC})


(b) In the opposite figure:


A circle M of circumference 44 cm, \overline{AB} is a diameter, \overline{BC} is a tangent at B and m ($\angle ACB$) = 30° **Find** the length of $\overline{BC} \left(\pi = \frac{22}{7}\right)$


(a) In the opposite figure:


AB = AD, m ($\angle DAB$) = 80°, m ($\angle C$) = 50° **Prove that:** The points A, B, C and D have a circle passing through them.


(b) Mention two cases of the cyclic quadrilateral.

1 Choose the correc	t answer:			
(1) If M is a circle, it	s diameter length is 6	cm, and A is a point on th	e circle, then	
(a) MA > 6 cm	(b) MA = 6 cm	(c) MA = 3 cm	(d) MA < 3 cm	
(2) The type of the	inscribed angle which	is opposite to an arc grea	ter than a semicircle is	
angle.				
(a) an acute	(b) an obtuse	(c) a right.	(d) a straight	
(3) \overline{AB} and \overline{CD} are two chords in a circle, $AB = 5$ cm and $CD = 3$ cm, then the chord which is nearer to the centre of the circle is				
(a) AB		(b) CD		
(c) both are equ	al	(d) cannot be det	ermined	
(4) We can identify	the circle if we are give	en		
(a) three colline	ar points	(b) two points		
(c) three non-co	ollinear points	(d) one point		
(5) If the measure of an angle of tangency = 70°, then the measure of the central angle subtended by the same arc equals				
(a) 35°	(b) 70°	(c) 140°	(d) 105°	
(6) The measure of the inscribed angle which is drawn in $\frac{1}{6}$ of a circle equals				
(a) 240°	(b) 120°	(c) 60°	(d) 30°	
	2 (a) Two concentric circles M, AB is a chord in the larger circle			
	he smaller circle at C a		ZC	
AE is a chord in the larger circle and intersects $\begin{pmatrix} y \\ M \end{pmatrix}$				
the smaller circle at Z and L, $\overline{MX} \perp \overline{AB}$ and $\overline{MY} \perp \overline{AE}$				
If m (\angle ABE) = n	n (∠ AEB) , then prove	that: $CD = ZL$.	E	
(b) In the opposite figure:				
\overrightarrow{AB} is a diameter in the circle M, $\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}$, D				
m (\angle AEC) = 30°, m (\overrightarrow{AC}) = 80° $E \xrightarrow{30^\circ} B \xrightarrow{M} A$				
Find: m (CD)				

(a) In the opposite figure:

 \overline{AB} is a chord of circle M, $\overline{MC} \perp \overline{AB}$. **Prove that:** m (\angle AMC) = m (\angle ADB)

(b) In the opposite figure:

 \overline{AB} is a chord in circle M, $\overline{CM} / / \overline{AB}$, $\overline{BC} \cap \overline{AM} = \{E\}$, **Prove that:** BE > AE.

(a) In the opposite figure:

A circle is drawn touching the sides of a triangle ABC , \overline{AB} , \overline{BC} , \overline{AC} at D, E, F, AD = 5 cm, BE = 4 cm, CF = 3 cm Find the perimeter of \triangle ABC

(b) In the opposite figure:

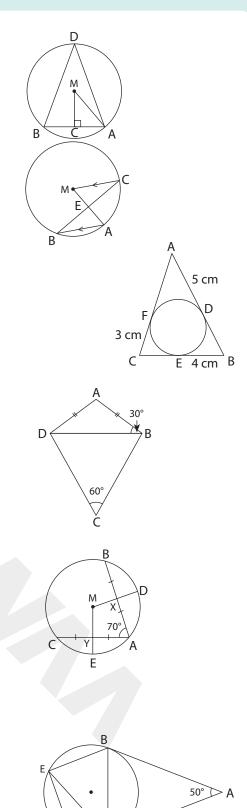
ABCD is a quadrilateral in which AB = AD, m ($\angle ABD$) = 30°, m ($\angle C$) = 60° **Prove that:** ABCD is a cyclic quadrilateral.

(a) In the opposite figure:

AB and AC are two chords equal in length at the circle M

, X is the midpoint of \overline{AB}

, Y is the midpoint of \overline{AC} , m ($\angle A$) = 70°

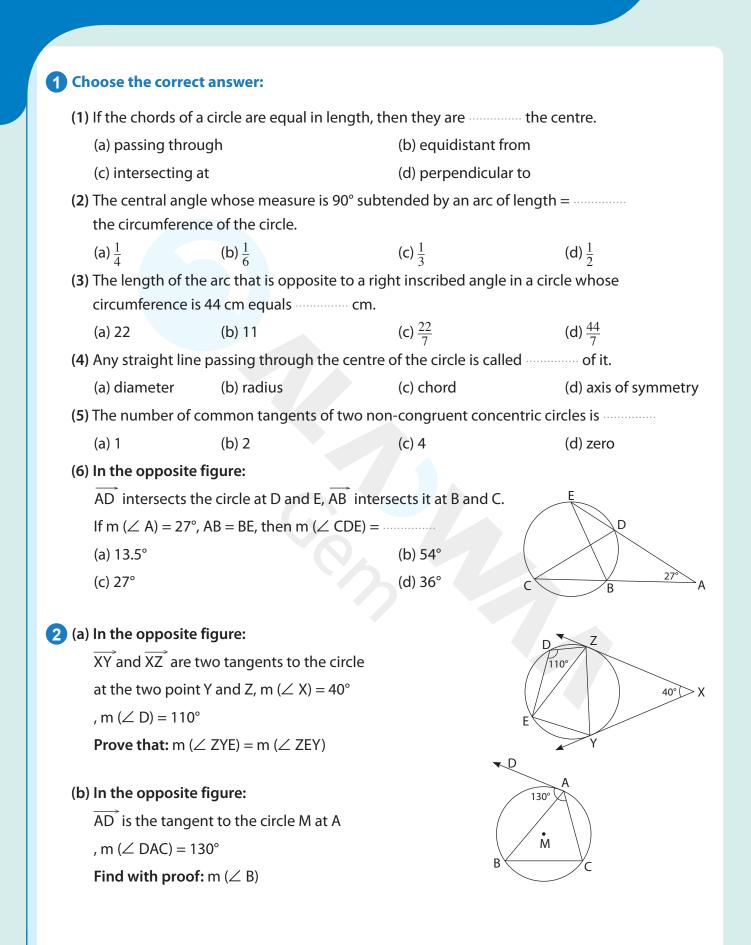

(1) **Find:** m (∠ DME)

(2) Prove that: XD = YE

(b) In the opposite figure:

 \overline{AB} and \overline{AC} are two tangent-segments to the circle at B and C , m (\angle A) = 50°, m (\angle D) = 115° **Prove that:**

(1) $\overrightarrow{\mathsf{BC}}$ bisects $\angle \mathsf{ABE}$



5

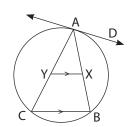
С

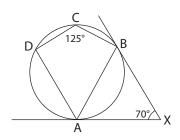
(a) ABC is a triangle inscribed in a circle,

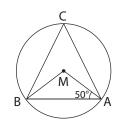
 \overrightarrow{AD} is a tangent to the circle at A, X $\in \overrightarrow{AB}$, Y \in AC where \overrightarrow{XY} // \overrightarrow{BC} **Prove that:**

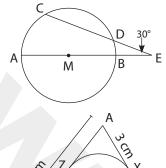
 $\overline{\text{AD}}$ is a tangent to the circle passing through the points A, X and Y .

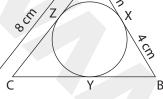
(b) \overline{XA} and \overline{XB} are two tangents to the circle at A and B

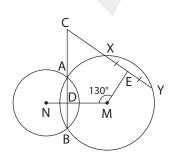

 $m (\angle AXB) = 70^\circ, m (\angle DCB) = 125^\circ$


Prove that:


First: \overrightarrow{AB} bisects \angle DAX.


Second: AD // XB.


4 (a) M is a circle, m (\angle MAB) = 50°, find m (\angle C).



(b) In the opposite figure:

 \overrightarrow{AB} is a diameter in the circle M, $\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}$, m ($\angle E$) = 30°, m (\overrightarrow{AC}) = 80°, find m (\overrightarrow{BD})

(a) In the opposite figure:

An inscribed circle of triangle ABC touches its sides at X, Y and Z. If AX = 3cm, XB = 4 cm, AC = 8 cm, find the length of \overline{BC} .

(b) In the figure opposite:

M and N are two intersecting circles where circle M \cap circle N equal {A, B} $\overrightarrow{YC} \cap \overrightarrow{BA} = \{C\}$ If E is the midpoint of \overrightarrow{XY} , m (\angle EMN) = 130°, **find** m (\angle C).

Algebra

Choose the correct answer: (1) $\frac{1}{x-3}$ (2) P (A) + P (B) **(3)** {0, 1} (4) (2, 1) **(5)** R **(6) R 2** (a) $n(x) = \frac{x}{x-2} \div \frac{x+3}{(x-2)(x+1)}$ Domain of $n = \mathbb{R} - \{2, -1, -3\}$ $n(x) = \frac{x}{x-2} \times \frac{(x-2)(x+1)}{x+3}$ $n(x) = \frac{x(x+1)}{x+3}$ **(b)** y = (1 - 2X)(1) X + 2y = 5(2) By substituting (1) in (2) $\mathcal{X} + 2(1 - 2\mathcal{X}) = 5$ $\mathcal{X} + 2 - 4\mathcal{X} = 5$ -3X = 3X = -1Substitute in (1) y = (1 - 2(-1))y = 3 $S.S. = \{(-1, 3)\}$ **3** (a) $P(A - B) = P(A) - P(A \cap B)$ P(A - B) = 0.7 - 0.3 = 0.4

(b)
$$n(x) = \frac{x(x+1)}{(x-1)(x+1)} - \frac{x+5}{(x+5)(x-1)}$$
 factorize
Domain of $n = \mathbb{R} - \{1, -1, -5\}$
 $n(x) = \frac{x}{(x-1)} - \frac{1}{(x-1)}$ simplify
 $n(x) = \frac{x-1}{(x-1)}$ subtract
 $n(x) = 1$ simplify

factorize

switch to multiplication simplify

4 (a)
$$a = 1, b = -4, c = 1$$

 $x = \frac{-b\pm\sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-(-4)\pm\sqrt{(-4)^2 - 4(1)(1)}}{2(1)}$
 $x = \frac{4\pm\sqrt{12}}{2} = 2 \pm\sqrt{3}$
 $x = 2 + \sqrt{3} = 3.73, x = 2 - \sqrt{3} = 0.27$
S.S.= { 3.73, 0.27 }
(b): $\because n_1(x) = \frac{2x}{2x+6} = \frac{2x}{2(x+3)} = \frac{x}{x+3}$
 \because The domain $n_1 = \mathbb{R} - \{-3\}$
 $\because n_2(x) = \frac{x^2 + 3x}{x^2 + 6x + 9} = \frac{x(x+3)}{(x+3)(x+3)} = \frac{x}{x+3}$
 \because The domain $n_2 = \mathbb{R} - \{-3\}$
 $\because n_1(x) = n_2(x)$, domain of n_1 = domain of n_2
 $\therefore n_1 = n_2$
5 (a) (1) $n(x) = \frac{x-2}{x+1}$
 $n^{-1}(x) = \frac{x+1}{x-2}$
the domain of $n^{-1} = \mathbb{R} - \{-1, 2\}$
(2) $n^{-1}(3) = \frac{3+1}{3-2} = 4$
(3) $\because n^{-1}(x) = \frac{x+1}{x-2}$
 $\therefore \frac{x+1}{x-2} = 2$
 $2(x-2) = x + 1$
 $2x - 4 = x + 1$
 $2x - x = 1 + 4$
 $\therefore x = 5$
(b) $x - y = 1$ (1)

b)
$$x - y = 1$$
 (1)
 $x^2 - y^2 = 25$ (2)
Substitute (1) in (2)
 $(x + y) = 25$ (3)
By adding (1) and (3)
Substitute (1) in (2)
 $2x = 26$
 $x = 13$
Substitute in (1)
 $13 - y = 1$
 $y = 12$
S.S = {(13, 12)}

Choose the correct answer: (1) $\{0,1,-1\}$ (2) $\{-3,3\}$ (4) $\mathbb{R} - \{0,1,-1\}$ (5) $\{(3,3),(-3,-3)\}$ $(3) \mathbb{R} - \{2, -5\}$ $(6) \{-5, 5\}$ **2** (a) (1) P (A \cap B) = $\frac{2}{6} = \frac{1}{3}$ (2) P (A – B) = $\frac{1}{6}$ (3) P (A^{*}) = $\frac{3}{6} = \frac{1}{2}$ **(b)** $n(x) = \frac{x-3}{(x-3)(x-4)} - \frac{4}{x(x-4)}$ factorize Domain $n = \mathbb{R} - \{3, 4, 0\}$ $n(x) = \frac{1}{(x-4)} - \frac{4}{x(x-4)}$ simplify $n(x) = \frac{x}{x(x-4)} - \frac{4}{x(x-4)}$ common denominator $n(x) = \frac{x-4}{x(x-4)}$ subtract $n(x) = \frac{1}{x}$ simplify **3** (a) a = 3, b = -5, c = -4 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(3)(-4)}}{2(3)}$ $x = \frac{5 \pm \sqrt{73}}{6}$ $x = \frac{5 + \sqrt{73}}{6} \approx 2.26$, $x = \frac{5 - \sqrt{73}}{6} \approx -0.59$ $S.S. = \{2.26, -0.59\}$ **(b)** : The domain of the n(x) is $\mathbb{R} - \{2, 3\}$ \therefore *n*(2) and *n*(3) are undefined $\therefore n(2) = \frac{4}{2^2 + 2a + b}$ 4 - 2a + b = 0 : 2a + b = -4(1) $\therefore n(3) = \frac{5}{3^2 + 3a + b}$ Type equation here. 9 + 3a + b = 0 : 3a + b = -9(2) 2a + b = -4 (*x* - 1) 3a + b = -9-2a - b = 4(1) 3a + b = -9 (2) by adding (1) and (2) a = -5 by substituting in the first equation -10 + b = -4

4 (a) $n^{-1}(x) = \frac{(x-3)(x^2+2)}{x^2-3x} = \frac{(x-3)(x^2+2)}{x(x-3)}$ domain = $\mathbb{R} - \{0, 3\}$ $n^{-1}(x) = \frac{(x^2 + 2)}{x}$ **(b)** x = (7 - y)(1) $x^2 + y^2 = 25$ (2) Substitute (1) in (2) $(7 - y)^2 + y^2 = 25$ $49 - 14y + y^2 + y^2 = 25$ $2y^2 - 14y + 49 = 25$ $2y^2 - 14y + 24 = 0$ (÷2) $y^2 - 7y + 12 = 0$ (y-4)(y-3)=0y = 4, y = 3substitute in (1) x = 3, x = 4 $S.S. = \{(3, 4), (4, 3)\}$ **5** (a) $n(x) = \frac{x(x+3)}{(x+3)(x-3)} \div \frac{2x}{x+3}$ Domain of $n = \mathbb{R} - \{-3, 3, 0\}$ $n(x) = \frac{x(x+3)}{(x+3)(x-3)} \times \frac{x+3}{2x}$ $n(x) = \frac{x+3}{2(x-3)} = \frac{x+3}{2x-6}$ **(b)** 5x - y = 3 $(\times 3)$ 15x - 3y = 9(1)x + 3y = 7(2) By adding (1), (2) 16*x* = 16 x = 1Substitute in (2) 1 + 3y = 73y = 6*y* = 2 $S.S. = \{(1,2)\}$

factorize

switch to multiplication

simplify

1 Choose the correct answer:

- (1) 4
- **(2)** 1,8
- (3) 1 P (A)
- (4) P (A)
- **(5)** {(5, 2)}
- **(6)** –2
- **2** (a) a = 1 , b = -2 , c = -6

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- $x = \frac{-(-2) \pm \sqrt{(-2)^2 4(1)(-6)}}{2(1)}$
- $x = \frac{2 \pm \sqrt{28}}{2}$
- $x = 1 + \sqrt{7} \approx 3.6$, $x = 1 \sqrt{7} \approx -1.6$
- $S.S. = \{3.6, -1.6\}$
- (b) Let the length = L and the width = W

$$L = (W + 4)$$
 (1)
2 (L + W) = 28 (2)
By substituting (1) in (2)
2 (W + 4 + W) = 28
2W + 4 = 14
2W = 10
W = 5 cm
By substituting in (1)
L = 5 + 4 = 9 cm
Area = L × W = 9 × 5 = 45 cm²
3 (a) $\because Z(f) = \{0, 1\}$ by substituting $x = 0$
 $\therefore b = 0$

substituting x = 0

a + 1 + 0 = 0 a = -1

(b)
$$y = (x + 3)$$
 (1)
 $x^{2} + y^{2} - xy = 13$ (2)
Substitute (1) in (2)
 $x^{2} + (x + 3)^{2} - x (x + 3) = 13$
 $x^{2} + x^{2} + 6x + 9 - x^{2} - 3x - 13 = 0$
 $x^{2} + 3x - 4 = 0$
 $(x + 4) (x - 1) = 0$
 $x = -4, x = 1$ substitute in (1)
 $y = -1, y = 4$
S.S. = {(-4, -1), (1, 4)}
(a) $n(x) = \frac{(x - 2)(x^{2} + 2x + 4)}{(x + 3)(x - 2)} \times \frac{x + 3}{(x^{2} + 2x + 4)}$ factorize
Domain of $n = \mathbb{R} - \{-3, 2\}$
 $n(x) = 1$ simplify
(b): $2x - y = 3$ (x2)
 $4x - 2y = 6$ (1)
 $x + 2y = 4$ (2)
By adding (1), (2)
 $5x = 10$
 $x = 2$
Substitute in (2)
 $2 + 2y = 4$
 $2y = 2$
 $y = 1$
S.S. = {(2, 1)}
(5) (a) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $P(A - B) = 0.3 + 0.6 - 0.2 = 0.7$
 $P(A - B) = P(A) - P(A \cap B)$
 $P(A - B) = 0.3 - 0.2 = 0.1$
(b) $n(x) = \frac{x(x + 2)}{(x + 2)(x - 2)} + \frac{x + 3}{(x - 3)(x - 2)}$ factorize
Domain of $n = \mathbb{R} - \{3, 2, -2\}$
 $n(x) = \frac{x(x - 2)}{(x - 2)(x - 3)} + \frac{x + 3}{(x - 3)(x - 2)}$ common denominator
 $n(x) = \frac{x^{2} - 2x + x}{(x - 2)(x - 3)} = \frac{x^{2} - 2x + 3}{(x - 3)(x - 2)}$ add
 $n(x) = \frac{x^{2} - 2x + 3}{(x - 2)(x - 3)} = \frac{x^{2} - 2x + 3}{(x - 3)(x - 2)}$ add
 $n(x) = \frac{x^{2} - 2x + 3}{(x - 2)(x - 3)} = \frac{x^{2} - 2x + 3}{(x - 3)(x - 2)}$ dd
 $n(x) = \frac{x^{2} - 2x + 3}{(x - 2)(x - 3)} = \frac{x^{2} - 2x + 3}{(x - 3)(x - 2)}$ dd
 $n(x) = \frac{x^{2} - 2x + 3}{(x - 2)(x - 3)} = \frac{x^{2} - 2x + 3}{(x - 3)(x - 2)}$ dd
 $n(x) = \frac{x^{2} - 2x + 3}{(x - 2)(x - 3)} = \frac{x^{2} - 2x + 3}{(x - 3)(x - 2)}$ dd

Geometry Choose the correct answer: (2) 60° (1) radius. (3) 3 (4) Touching internally (6) 108° (5) equal to (a) \therefore MY \cap circle M = {Z} \therefore MY = MZ + ZY \therefore MZ = MX = 5 cm (radii) \therefore MY = 5 + 8 = 13 cm $\therefore (MY)^2 = (13)^2 = 169$ $(MX)^2 = (5)^2 = 25$ $(XY)^2 = (12)^2 = 144$ $(MX)^{2} + (XY)^{2} = 25 + 144 + 169 = (MY)^{2}$ \therefore m \angle MXY = 90° (The converse of the pythagoras' theorem) $\therefore \overline{XY} \perp \overline{MX}$ and \overline{MX} is a radius \therefore XY is a tangent to the circle at X. (b) ·· The two circles are touching internally at A $\therefore A \in MN$, $MN \perp AB$ \therefore MN = 10 - 6 = 4 cm (Touching internally) \therefore Area \triangle BMN = $\frac{1}{2} \times$ MN \times AB $\therefore 24 = 4 \times \frac{1}{2} \times A\tilde{B}$:. AB = 12 cm **3** (a) m (A) = $\frac{1}{2}$ [m (\widehat{CH}) – m(\widehat{BD})] $30^{\circ} = \frac{1}{2} [120 - m(\overrightarrow{BD})]$ $60^{\circ} = 120^{\circ} - m$ (BD) $m(BD) = 60^{\circ}$ $m(\overrightarrow{CH}) + m(\overrightarrow{HD}) + m(\overrightarrow{BD}) + m(\overrightarrow{BC}) = 360^{\circ}$ $\therefore m(\widehat{HD}) = m(\widehat{BC}) = \frac{360^\circ - (120^\circ + 60^\circ)}{2}$ $m(HD) = m(BC) = 90^{\circ}$ $\therefore \angle C$ is an inscribed angle subtended by HDB \therefore m (\angle C) = $\frac{1}{2}$ m (\overrightarrow{HDB}) = $\frac{1}{2}$ × 150° = 75° $\ln \Delta ACH$: $m (\angle H) = 180^{\circ} - (30^{\circ} + 75^{\circ}) = 75^{\circ}$ $m (\angle H) = m (\angle HCB) = 75^{\circ}$ and AH = AC(1) $m(\overrightarrow{BC}) = m(\overrightarrow{HD})$ HD = BC(2) By subtracting (2) from (1) AH - AB = AC - BCAD = AB

(b) $\because \overrightarrow{AB}$ is a diameter $\therefore m(\overrightarrow{AD}) + m(\overrightarrow{CD}) + m(\overrightarrow{BC}) = 180^{\circ}$ $m(\angle A) = 30^{\circ}$ $\because m(\overrightarrow{BC}) = 60^{\circ}$ $\because m(\overrightarrow{CD}) + m(\overrightarrow{AD}) = 180^{\circ} - 60^{\circ} = 120^{\circ}$ $\therefore m(\overrightarrow{AD}) = m(\overrightarrow{CD}) = \frac{120^{\circ}}{2} = 60^{\circ}$ $m \angle ABD = \frac{1}{2}m(\overrightarrow{AD}) = 30^{\circ}$ $m \angle CDB = \frac{1}{2}m(\overrightarrow{BC}) = 30^{\circ}$ $\because m(\angle DBA) = m(\angle CDB) = 30^{\circ}$ They are alternate $\therefore \overrightarrow{AB} / / \overrightarrow{CD}$

4 (a) ∵ AB = AC

 \therefore m (\angle B) = m (\angle C)

 \therefore m (DHC) = m (HDB)

by subtracting m (HD) from both sides

 \therefore m (DB) = m (HC)

(b) \therefore circumference = 44 cm

 $\therefore 2\pi r = 44$

```
r = 44 \div (2 \times \frac{22}{7}) = 7 \text{ cm}
```

- \therefore AB is a diameter of length 14 cm and BC is a tangent
- \therefore m($\angle B$) = 90°

```
\therefore m(\angleACB) = 30°
```

```
\therefore AC = 28 cm and (BC)<sup>2</sup> = (AC)<sup>2</sup> - (AB)<sup>2</sup>
```

 $BC = \sqrt{28^2 - 14^2} = 14\sqrt{3} \text{ cm}$

 \therefore AB = AD, m (\angle DAB) = 80°

$$\therefore m(\angle D) = m(\angle ABD) = \frac{180^\circ - 80^\circ}{2} = 50^\circ$$

- \therefore m(\angle D) = m (\angle C) = 50°
- \cdot They are both drawn angles on the same base $\overline{\text{AB}}$ and on one side of it.
- \odot They points A, B , C and D have a circle passing through them.

(b) Mention any two cases of the following:

1-If there is a point in the plane equidistant from all vertices.

- 2- If there is an exterior angle its measure = the measure of the niterior angle at the opposite vertex.
- 3 If there are two opposite angles are supplementary.
- 4- If there are two angles equal in measure and drawn on the same base and one side of this base.

1 Choose the correct answer:

(1) MA = 3 cm.(4) three non-collinear points	(2) an obtuse (5) 140°	(3) AB (6) 30°
2 (a) In \triangle ABE: \therefore m (\angle ABE) = m (\angle AEB) \therefore AB = AE In the larger circle: \therefore AB = AE \therefore MX \perp AB and MY \perp AE \therefore MX = MY In the smaller circle: \therefore MX = MY		
$\therefore \overline{MX} \perp \overline{AB} \text{ and } \overline{MY} \perp \overline{AE}$ $\therefore CD = ZL$		
(b) $\because \overline{AB}$ is a diameter in circle M \therefore m (\widehat{ACB}) =180° Draw (\overline{MC}), (\overline{MD}) \because m (\widehat{AC}) = 80° \therefore m (\angle AMC) = 80° \therefore m (\angle CME) = 180° - 80° = 100° In triangle \triangle CME: \therefore m (\angle ECM) = 180° - (30° + 100°) = 50° In triangle \triangle CMD: \because MC = MD radii \therefore m (\angle CMD) = 180° - (50° + 50°) = 80° \therefore m (\widehat{CD}) = 80°		
(a) Draw BM		
Proof: In △ MAB: $\therefore \overline{MA} = \overline{MB} \text{ (radii)}, \overline{MC} \perp \overline{AB}$ $\therefore \text{ m} (\angle AMC) = \text{ m} (\angle BMC) = \frac{1}{2} \text{ m} (\angle AMC)$ $\therefore \text{ inscribed } \angle ADB \text{ and central } \angle AMB \text{ a}$ $\therefore \text{ m} (\angle ADB) = \frac{1}{2} \text{ m} (\angle AMB)$ $\therefore \text{ From (1) and (2) we get: m} (\angle AMC) =$	re subtended at (AB) (2)	le properties

(b) :: CM // AB \therefore m (\angle CMA) = m (\angle MAB) alternate angles \therefore m (\angle CMA) = 2 \times m (\angle CBA) central and inscribed \therefore m (\angle MAB) = 2 \times m (\angle CBA) \therefore m (\angle MAB) > m (\angle CBA) In \triangle ABE: $\therefore BE > AE$ 4 (a) \therefore \overline{AB} , \overline{BC} and \overline{AD} are three tangents to the circle $\therefore AD = AF = 5 cm.$ BD = BE = 4 cmCE = CF = 3 cm \therefore Perimeter of ABC = AB + BC + AC \therefore Perimeter of $\angle ABC = 8 + 9 + 7 = 24$ cm. (b) In ⊿ABC: $\therefore AB = AD$ \therefore m (\angle ABD) = m (\angle MDB) = 30° $m (\angle BAD) = 180^{\circ} - (30^{\circ} + 30^{\circ}) = 120^{\circ}$ $m (\angle A) + m (\angle C) = 180^{\circ}$ (opposite angles) ABCD is a cyclic quadrilateral. **(a) In the circle M:** : X and y are midpoints of AB and AC respectively \therefore MX \perp AB and MY \perp AC And m (\angle MXA) = m (\angle MYA) = 90° In the quadrilateral AXMY: \therefore m (\angle A) + m (\angle XMY) + m (\angle MXA) + m (\angle MYA) = 360° \therefore m (\angle DME) = 360° - (90 ° + 90 ° + 70°) = 110° $\therefore AB = AC$ $MX \perp AB and MY \perp AC$ \therefore MD = ME = r \therefore MX = MY By subtracting MX from MD and MY from ME we get that: XD = YE (b) \overline{AB} and \overline{AC} are two tangents \therefore AB = AC and m (\angle ABC) = m (\angle ACB) = $\frac{180^{\circ} - 50^{\circ}}{2}$ = 65° :: EBCD is a cyclic quadrilateral. \therefore m (\angle EDC) + m (\angle CBE) = 180° $m (\angle CBE) = 180^{\circ} - 115^{\circ} = 65^{\circ}$ \therefore m (\angle ABC) = m (\angle EBC) = 65° $\therefore \overrightarrow{BC}$ bisects $\angle ABE$ $\therefore \angle$ BEC is an inscribed angle subtended by (BC) and \angle ABC is an angle of tangency subtended by (BC) \therefore m (\angle ABC) = m (\angle BEC) = 65°

$$\therefore$$
 m (\angle EBC) = m (\angle BEC) = 65°

 \therefore CB = CE

1 Choose the correct answer:

(1) equidistant from	(2) $\frac{1}{4}$	(3) 22	
(4) Axis of symmetry	(5) zero	(6) 54°	
(a) \therefore \overrightarrow{XY} and \overrightarrow{XZ} are two tangents			
$\therefore XY = XZ$			
And m (\angle xzy) = m (\angle xyz) = $\frac{180^{\circ} - 40^{\circ}}{2}$ = 70	0		
ZYED is a cyclic quadrilateral.			
∴ m (∠ ZDE) + m (∠ ZYE) = 180°			
And m (∠ EYZ) = 180° – 110° = 70°	(1)		
$\because \angle$ ZEY is an inscribed angle subtended by	/ (ZŶ)		
and \angle XZY is an angle of tangency subtend	ed by (\overrightarrow{ZY})		
\therefore m (\angle ZYE) = m (\angle XZY) = 70°	(2)		
From (1) and (2) we get that:			
$m (\angle ZYE) = m (\angle ZEY)$			
(b) \overrightarrow{AD} is a tangent:			
$\therefore \angle$ DAC is an angle of tangency subtended	d by (ABC)		
and m (\angle DAC)= $\frac{1}{2}$ m (\overrightarrow{ABC}) =130°			
And m (\widehat{ABC}) = 2 × 130° = 260°			
\therefore m (\overrightarrow{AC}) + m (\overrightarrow{ABC}) = 360°			
\therefore m (\overrightarrow{AC}) = 360° - 260° = 100°			
$\because \angle$ B is an inscribed angle subtended by (ÂC)		
\therefore m (\angle B) = $\frac{1}{2}$ m (\overrightarrow{AC}) = 50°			
3 (a) \therefore \overrightarrow{AD} is a tangent and, \overrightarrow{AB} is the chord of ta	ingency.		
\therefore m (\angle DAB) = m (\angle C)	(1) an inscribed angle a	and a central angle	
	subtended by the s	ame arc (\widehat{AB})	
$\therefore \overline{XY} / \overline{BC}$, \overline{AC} is a transversal			
\therefore m (\angle AYX) = m (\angle C) corresponding angle (2)			
From (1) and (2) and we get: m (\angle DAB) = m	n (∠ AYX)		
\therefore m (\angle DAX) = m (\angle AYX)			

 \therefore $\overrightarrow{\text{AD}}$ is a tangent to the circle passing through the points A, X and Y

(b): Proof:

- : XA and XB are two tangent segments.
- $\therefore XA = XB$
- In Δ XAB:
- \therefore m (\angle XAB) = m (\angle XBA), m (\angle X) = 70°
- :. m (\angle XAB) = $\frac{180^{\circ} 70^{\circ}}{2}$ = 55° (1)
- \therefore ABCD is a cyclic quadrilateral, m (\angle C) = 125°
- \therefore m (\angle DAB) = 180° 125° = 55° (2)
- From (1) and (2)
- \therefore m (\angle XAB) = m (\angle DAB) = 55°
- \therefore AB bisects \angle DAX
- \therefore m (\angle XBA) = m (\angle DAB) = 55° alternate angles
- .:. AD // XB

4 (a) ∵ MA = MB (radii)

- \therefore m (\angle MAB) = m (\angle MBA) = 50°
- \therefore m (\angle AMB) = 180° (50° + 50°) = 80°
- \therefore m (\angle BCA) = 40° an inscribed angle and a central angle subtended by the arc (AB)

(b) :: m (
$$\angle$$
 E) = 30° , m (AC) = 80°

$$\therefore 30^{\circ} = \frac{180^{\circ} - \text{m (BD)}}{2}$$
$$\therefore \text{m (BD)} = 20^{\circ}$$

5 (a) ∵ The inscribed circle of the triangle ABC touches its sides at X , Y and Z

$$\therefore$$
 AX = AZ = 3 cm , BX = BY = 4cm , CZ = CY

$$\therefore CZ = 8 - 3 = 5 cm = CY$$

 \therefore BC = 4 + 5 = 9 cm

(b) :: E is the midpoint of XY

- $\therefore \overline{\mathsf{ME}} \perp \overline{\mathsf{XY}}$
- \therefore \overline{AB} is a common chord of circles M , N
- $\therefore \overline{\mathsf{AB}} \perp \overline{\mathsf{MN}}$
- ∵ m (∠ EMN) = 130°
- \therefore m (\angle C) = 360 (90 +90 + 130) = 50°